Members Can Post Anonymously On This Site
NASA Invites Social Creators for Launch of Two NASA Astrophysical Missions
-
Similar Topics
-
By NASA
A SpaceX Falcon Heavy rocket carrying NASA’s Europa Clipper spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 12:06 p.m. EDT on Monday, Oct. 14, 2024. SpaceX From sending crew members to the International Space Station to launching a spacecraft to Jupiter’s icy moon Europa to determine if it could support life, 2024 was a busy record setting year for NASA and its partners at Kennedy Space Center in Florida.
JANUARY
First Lunar Lander Takes Flight
The first flight of NASA’s CLPS (Commercial Lunar Payload Services) initiative lifted off with Astrobotic’s Peregrine Mission One lunar lander aboard the inaugural launch of United Launch Alliance’s (ULA) Vulcan rocket on Jan. 8 from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida to study the lunar exosphere, thermal properties, and magnetic fields on the Moon’s surface. This mission became the first U.S. commercial lander to launch to the lunar surface; however, the spacecraft experienced a propulsion issue that prevented the landing on the Moon.
A United Launch Alliance Vulcan rocket carrying Astrobotic’s Peregrine lunar lander lifts off at 2:18 a.m. EST from Space Launch Complex 41 at Cape Canaveral Space Force Station in Florida on Monday, Jan. 8, 2024.NASA/Kim Shiflett JANUARY
Third Private Mission to Space
At the world’s premier multi-user spaceport, the four-person crew of Axiom Mission 3 became the third private astronaut mission to launch to the International Space Station on Jan. 18 from Launch Complex 39A. The crew completed more than 30 research experiments developed for microgravity in collaboration with organizations across the globe.
A SpaceX Falcon 9 rocket carrying the company’s Dragon spacecraft for Axiom Space’s Mission 3 to the International Space Station lifts off at 4:49 p.m. EST from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Thursday, Jan. 18, 2024. NASA/Chris Swanson JANUARY
Food and Supplies Delivered to the International Space Station
Northrop Grumman’s Cygnus spacecraft launched on a SpaceX Falcon 9 rocket for the first time on Jan. 30 from Space Launch Complex 40 at Cape Canaveral Space Force Station. The company’s 20th resupply mission brought 8,200 pounds of science investigations, supplies, and equipment to the International Space Station.
Commercial Resupply Mission to space station
YouTube FEBRUARY
Understanding Earth’s Climate
NASA’s PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) is a mission to observe and explore what makes Earth so different from every other planet we study – life itself. Three-quarters of our home planet is covered by water, and PACE’s advanced instruments provide new ways to study life at the ocean’s surface by measuring the abundances and distributions of microscopic algae known as phytoplankton. The observations are helping researchers better monitor ocean health, air quality, and climate change. PACE launched on a SpaceX Falcon 9 rocket from Cape Canaveral Space Force Station’s Space Launch Complex 40 on Feb. 8.
A SpaceX Falcon 9 rocket with NASA’s PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) spacecraft stands vertical at Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida on Monday, Feb. 5, 2024. SpaceX FEBRUARY
Intuitive Machines First Mission Lands on Moon
NASA’s CLPS initiative with Intuitive Machines’ made history when the Nova C-class lunar lander launched from Kennedy and later arrived on the Moon’s South Pole region known as Malapert A on Feb. 22.
IM-1, the first NASA Commercial Launch Program Services. launch for Intuitive Machines’ Nova-C lunar lander, will carry multiple payloads to the Moon, including Lunar Node-1, demonstrating autonomous navigation via radio beacon to support precise geolocation and navigation among lunar orbiters, landers, and surface personnel. NASA/Marshall Space Flight Center FEBRUARY
Artemis II Practice Procedures
Artemis II NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen, NASA’s Exploration Ground System’s Landing and Recovery Team, and partners from the Department of Defense participated in the Underway Recovery Test 11 off the coast of San Diego. The operation mimicked procedures that will be used to recover the Artemis II crew and the Orion spacecraft after their return from the Moon, with the crew exiting a mockup of Orion into a boat and then ferried to a U.S. Navy ship.
During sunrise over the Pacific Ocean, members of NASA’s Exploration Ground System’s Landing and Recovery team and partners from the Department of Defense aboard the USS San Diego practice recovery procedures using the Crew Module Test Article during Underway Recovery Test 11 (URT-11) off the coast of San Diego on Friday, Feb. 23, 2024. NASA/Kenny Allen MARCH
NASA’s SpaceX Crew-8 Quartet Launches to Space Station
NASA astronauts Matt Dominick, Michael Barratt, and Jeanette Epps, along with Roscosmos cosmonaut Alexander Grebenkin launched March 3 from Kennedy’s Launch Complex 39A on an eight-month science mission aboard the International Space Station.
A SpaceX Falcon 9 rocket carrying the company’s Dragon spacecraft launches NASA’s SpaceX Crew-8 mission to the International Space Station on Sunday, March 3, 2024, from NASA’s Kennedy Space Center in Florida. NASA/Cory S Huston MARCH
NASA’s SpaceX 30th Commercial Resupply Mission
Research and technology demonstrations, along with food and other supplies launched to the International Space Station aboard NASA’s SpaceX commercial resupply mission. A SpaceX Falcon 9 rocket carrying a Dragon spacecraft launched March 21 from Space Launch Complex 40.
A SpaceX Falcon 9 rocket soars after its liftoff from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida at 4:55 p.m. EDT on Thursday, March 21, on the company’s 30th Commercial Resupply Services mission for the agency to the International Space Station. NASA/Glenn Benson APRIL
Solar Eclipse Captivates Nation
A total solar eclipse moved across North America, passing over Mexico, United States, and Canada on April 8. Kennedy provided coverage on air and online from every city’s point of totality for viewers at home.
Solar prominences are seen during a total solar eclipse in Dallas, Texas on Monday, April 8, 2024. NASA/Keegan Barber MAY
NASA Welcomes New Commercial Resupply Spacecraft
Sierra Space’s Dream Chaser arrived at Kennedy on May 18 following testing at the agency’s Armstrong Test Facility in Sandusky, Ohio. The uncrewed spaceplane is scheduled to launch aboard a ULA Vulcan rocket from Space Launch Complex 41 at Cape Canaveral Space Force Station in 2025, delivering thousands of pounds of cargo to the orbiting laboratory.
Dream Chaser Tenacity, Sierra Space’s uncrewed cargo spaceplane is lifted and moved by crane inside the Space Systems Processing Facility (SSPF) at NASA’s Kennedy Space Center in Florida on Monday, May 20, 2024. Sierra Space/Shay Saldana MAY
Historic Marker Honors Original Headquarters Location
Officials unveiled a large bronze historical plaque on May 28 to mark the location of NASA’s Kennedy Space Center’s original headquarters building just west of the current Central Campus Headquarters Building on NASA Parkway.
From the left, NASA Kennedy Space Center’s, Maui Dalton, project manager, engineering; Katherine Zeringue, cultural resources manager; Janet Petro, NASA Kennedy Space Center director; and Ismael Otero, project manager, engineering, present a large bronze historical marker plaque at the location of NASA Kennedy’s original headquarters building on Tuesday, May 28, 2024. NASA/Mike Chambers JUNE
NASA’s Boeing Crew Flight Test Launches First Crew
NASA astronauts Butch Wilmore and Suni Williams became the first crew to fly aboard Boeing’s Starliner spacecraft. Starliner launched on June 6 atop ULA’s Atlas V rocket from Space Launch Complex 41 as part of NASA’s Boeing Crew Flight Test to the International Space Station.
A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft aboard launches from Space Launch Complex 41 at Cape Canaveral Space Force Station, Wednesday, June 5, 2024, in Florida. NASA/Joel Kowsky JUNE
Final NASA, NOAA GOES-R Launch
NOAA’s (National Oceanic and Atmospheric Administration) GOES-U (Geostationary Operational Environmental Satellite U) launched June 25 from Launch Complex 39A at Kennedy. The GOES-U satellite is the last of NOAA’s GOES-R Series, and it carries seven instruments that collect advanced imagery and atmospheric measurements, provide real-time mapping of lightning activity, and detect approaching space weather hazards.
Technicians prepare NOAA’s (National Oceanic and Atmospheric Administration) Geostationary Operational Environmental Satellite (GOES-U) for encapsulation inside payload fairing halves on Thursday, June 13, 2024, at the Astrotech Space Operations facility in Titusville near NASA’s Kennedy Space Center in Florida. NASA/Ben Smegelsky JULY
Barge Carries Artemis II Core Stage to Kennedy
NASA’s SLS (Space Launch System) Moon rocket that will power humans to the Moon arrived July 24 at Kennedy. NASA’s Pegasus barge ferried the 212-foot-tall core stage from NASA’s Michoud Assembly Facility in New Orleans. The core stage remains at the Vehicle Assembly Building awaiting integration ahead of the Artemis II launch.
Artemis II core state arrives at Kennedy
YouTube AUGUST
NASA, Northrop Grumman Launch Supplies to Space Station
NASA science investigations, supplies, and equipment launched on Aug. 24 aboard a Cygnus spacecraft from Space Launch Complex 40 as part of Northrop Grumman’s 21st commercial resupply mission to the International Space Station.
Launch of a SpaceX Falcon 9 rocket carrying Northrop Grumman’s Cygnus spacecraft to the International Space Station.SpaceX SEPTEMBER
NASA’s Boeing Crew Flight Test Spacecraft Safely Lands
An uncrewed Boeing Starliner spacecraft undocked from the space station and landed on Sept. 7 at White Sands Space Harbor in New Mexico, completing a three-month flight test to the orbiting laboratory.
Boeing and NASA teams work around NASA’s Boeing Crew Flight Test Starliner spacecraft after it landed uncrewed.NASA/Aubrey Gemignani SEPTEMBER
NASA’s SpaceX Crew-9 Duo Heads to Space
NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov launched to the International Space aboard a SpaceX Dragon spacecraft on Sept. 28 for a roughly five-month mission as part of NASA’s SpaceX Crew-9 mission. The launch was the first crewed mission from Space Launch Complex 40. Hague, Gorbunov, along with NASA astronauts Butch Wilmore and Suni Williams, are slated to return to Earth in early 2025.
NASA astronaut Nick Hague (left) and Roscosmos cosmonaut Aleksandr Gorbunov walk through the crew access arm connecting the launch tower to the SpaceX Dragon spacecraft on Saturday, Sept. 28, 2024. SpaceX OCTOBER
Mobile Launcher on the Move
NASA’s mobile launcher 1 made the 4.2-mile trek on Oct. 4 from Launch Complex 39B to the Vehicle Assembly Building in preparation for stacking the Artemis II Moon rocket. The mobile launcher had been at the launch pad since August 2023 undergoing integrated testing and upgrades. NASA’s crawler-transporter 2 also achieved a milestone reaching 2,500 miles traveled since its construction in 1965.
Mobile launcher rolls back to Vehicle Assembly Building
YouTube OCTOBER
Jupiter Moon Mission Takes Flight
NASA’s Europa Clipper is the agency’s first mission to study Jupiter’s icy moon Europa to see if the ocean beneath the moon’s crust has the ingredients to support life. The spacecraft launched Oct. 16 aboard a SpaceX Falcon Heavy rocket from Launch Complex 39A. The Europa Clipper spacecraft will reach Europa in 2030.
A reflection in the water shows NASA’s Europa Clipper spacecraft atop SpaceX’s Falcon Heavy rocket at Launch Pad 39A on Sunday, Oct. 13, 2024, at the agency’s Kennedy Space Center in Florida. SpaceX OCTOBER
NASA’s SpaceX Crew-8 Back on Earth
NASA’s SpaceX Crew-8 astronauts Matthew Dominick, Michael Barratt, and Jeanette Epps, as well as Roscosmos cosmonaut Alexander Grebenkin, splashed down in their SpaceX Dragon spacecraft off the coast of Pensacola, Florida, on Oct. 25, completing a seven-month science mission aboard the International Space Station.
The SpaceX Crew Dragon Endeavour spacecraft is seen as it lands Friday, Oct. 25, 2024. NASA/Joel Kowsky NOVEMBER
New Science and Supplies Sent to Space Station
A SpaceX Dragon spacecraft on a Falcon 9 rocket carrying more than 6,000 pounds of supplies launched Nov. 4, from Launch Complex 39A bound for the space station. The commercial resupply mission delivered essential supplies and supports dozens of research experiments during Expedition 72.
The SpaceX Falcon 9 rocket carrying the Dragon spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Tuesday, Nov. 4, on the company’s 31st commercial resupply services mission for the agency to the International Space Station. SpaceX NOVEMBER
NASA’s Artemis II Booster Segments Take Shape
Engineers and technicians with the Exploration Ground Systems Program began stacking on Nov. 20, the first segment of the Artemis II SLS solid rocket boosters onto mobile launcher 1 inside the Vehicle Assembly Building.
Down the transfer aisle from the Artemis II SLS (Space Launch System) core stage, an overhead crane hoists the left aft assembly, or bottom portion of the solid rocket boosters for the SLS Moon rocket inside the Vehicle Assembly Building at NASA’s Kennedy Space Center on Tuesday, Nov. 19, 2024. NASA/Kevin Davis DECEMBER
Record-Setting Year of Launches
More than 80 launches roared into space from Kennedy and Cape Canaveral in 2024, and 2025 promises to bring even more government and commercial missions to the Eastern Range.
A SpaceX Falcon Heavy rocket carrying NASA’s Europa Clipper spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 12:06 p.m. EDT on Monday, Oct. 14, 2024. SpaceXView the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Perseverance Mars rover used its right-front navigation camera to capture this first view over the rim of Jezero Crater on Dec. 10, 2024, the 1,354th Martian day, or sol, of the mission. The camera is facing west from a location nicknamed “Lookout Hill.”NASA/JPL-Caltech NASA’s Perseverance Mars rover captured this scene showing the slippery terrain that’s made its climb up to the rim of Jezero Crater challenging. Rover tracks can be seen trailing off into the distance, back toward the crater’s floor.NASA/JPL-Caltech The road ahead will be even more scientifically intriguing, and probably somewhat easier-going, now that the six-wheeler has completed its long climb to the top.
NASA’s Perseverance Mars rover has crested the top of Jezero Crater’s rim at a location the science team calls “Lookout Hill” and rolling toward its first science stop after the monthslong climb. The rover made the ascent in order to explore a region of Mars unlike anywhere it has investigated before.
Taking about 3½ months and ascending 1,640 vertical feet (500 vertical meters), the rover climbed 20% grades, making stops along the way for science observations. Perseverance’s science team shared some of their work and future plans at a media briefing held Thursday, Dec. 12, in Washington at the American Geophysical Union’s annual meeting, the country’s largest gathering of Earth and space scientists.
“During the Jezero Crater rim climb, our rover drivers have done an amazing job negotiating some of the toughest terrain we’ve encountered since landing,” said Steven Lee, deputy project manager for Perseverance at NASA’s Jet Propulsion Laboratory in Southern California. “They developed innovative approaches to overcome these challenges — even tried driving backward to see if it would help — and the rover has come through it all like a champ. Perseverance is ‘go’ for everything the science team wants to throw at it during this next science campaign.”
A scan across a panorama captured by NASA’s Perseverance Mars rover shows the steepness of the terrain leading to the rim of Jezero Crater. The rover’s Mastcam-Z camera system took the images that make up this view on Dec. 5. NASA/JPL-Caltech/ASU/MSSS Since landing at Jezero in February 2021, Perseverance has completed four science campaigns: the “Crater Floor,” “Fan Front,” “Upper Fan,” and “Margin Unit.” The science team is calling Perseverance’s fifth campaign the “Northern Rim” because its route covers the northern part of the southwestern section of Jezero’s rim. Over the first year of the Northern Rim campaign, the rover is expected to visit as many as four sites of geologic interest, take several samples, and drive about 4 miles (6.4 kilometers).
“The Northern Rim campaign brings us completely new scientific riches as Perseverance roves into fundamentally new geology,” said Ken Farley, project scientist for Perseverance at Caltech in Pasadena. “It marks our transition from rocks that partially filled Jezero Crater when it was formed by a massive impact about 3.9 billion years ago to rocks from deep down inside Mars that were thrown upward to form the crater rim after impact.”
This animation shows the position of NASA’s Perseverance Mars rover as of Dec. 4, 2024, the 1,347th Martian day, or sol, of the mission, along with the proposed route of the mission’s fifth science campaign, dubbed Northern Rim, over the next several years. NASA/JPL-Caltech/ESA/University of Arizona “These rocks represent pieces of early Martian crust and are among the oldest rocks found anywhere in the solar system. Investigating them could help us understand what Mars — and our own planet — may have looked like in the beginning,” Farley added.
First Stop: ‘Witch Hazel Hill’
With Lookout Hill in its rearview mirror, Perseverance is headed to a scientifically significant rocky outcrop about 1,500 feet (450 meters) down the other side of the rim that the science team calls “Witch Hazel Hill.”
“The campaign starts off with a bang because Witch Hazel Hill represents over 330 feet of layered outcrop, where each layer is like a page in the book of Martian history. As we drive down the hill, we will be going back in time, investigating the ancient environments of Mars recorded in the crater rim,” said Candice Bedford, a Perseverance scientist from Purdue University in West Layfette, Indiana. “Then, after a steep descent, we take our first turns of the wheel away from the crater rim toward ‘Lac de Charmes,’ about 2 miles south.”
Lac de Charmes intrigues the science team because, being located on the plains beyond the rim, it is less likely to have been significantly affected by the formation of Jezero Crater.
After leaving Lac de Charmes, the rover will traverse about a mile (1.6 kilometers) back to the rim to investigate a stunning outcrop of large blocks known as megabreccia. These blocks may represent ancient bedrock broken up during the Isidis impact, a planet-altering event that likely excavated deep into the Martian crust as it created an impact basin some 745 miles (1,200 kilometers) wide, 3.9 billion years in the past.
More About Perseverance
A key objective of Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet and as the first mission to collect and cache Martian rock and regolith.
NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
For more about Perseverance:
https://science.nasa.gov/mission/mars-2020-perseverance
News Media Contacts
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2024-174
Share
Details
Last Updated Dec 12, 2024 Related Terms
Perseverance (Rover) Astrobiology Jet Propulsion Laboratory Mars Mars 2020 Explore More
5 min read NASA’s Juno Mission Uncovers Heart of Jovian Moon’s Volcanic Rage
Article 21 mins ago 5 min read NASA-DOD Study: Saltwater to Widely Taint Coastal Groundwater by 2100
Article 22 hours ago 4 min read NASA Study: Crops, Forests Responding to Changing Rainfall Patterns
Earth’s rainy days are changing: They’re becoming less frequent, but more intense. Vegetation is responding.
Article 22 hours ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Current brake system technology cool disc brakes with air pulled from inside the vehicle’s body to prevent overheating. The channels cut into the exterior of the disc brakes developed by Orbis Brakes draw in external air, which is cooler, ensure the brakes work more efficiently.Credit: Orbis Brakes Inc Just as NASA needs to reduce mass on a spacecraft so it can escape Earth’s gravity, automotive manufacturers work to reduce weight to improve vehicle performance. In the case of brake rotors, lighter is better for a vehicle’s acceleration, reliable stopping, and even gas mileage. Orbis Brakes Inc. licensed a NASA-patented technology to accomplish that and more. This revolutionary brake disc design is at least 42% lighter than conventional cast iron rotors, with performance comparable to carbon-ceramic brakes.
Jonathan Lee, structural materials engineer at NASA’s Marshall Space Flight Center in Huntsville, Alabama, uses his skills as a mechanical designer backed with material science training on multiple projects including the Space Launch System and the International Space Station. Interested in supporting NASA’s other mission to advance technology to improve life on Earth, he was looking for an innovative way to design a better automobile disc brake.
He started with a single disc with a series of small fins around the central hub. As they spin, these draw in air and push it across the surface of the disc, where the brake pads make contact. This cools the rotor, as well as the brake pads and calipers. He then added several long, curved depressions around the braking surfaces, radiating from the center to create the regular, periodic pattern that gives the new technology, known as Orbis, its PeriodicWave brand name.
The spinning fins and the centrifugal force of the wheel push air into trenches, causing a turbulent airflow that draws away heat. These trenches in the braking surfaces also increase the available surface for air cooling by more than 30% and further reduce the weight of the disc. They also increase friction in the same way that scoring concrete makes steps safer to walk on – the brake pads are less likely to slip, which makes braking more reliable.
The troughs draw away more than just heat, too. Water and road debris getting between the pad and rotor are equally problematic, so the grooves provide a place for the air vortex to push any substance out of the way. A small hole machined at the end of each one creates an opening through which unwanted material can escape.
The expertise developed while solving problems in space has proven useful on Earth, too. Orbis’s brakes are sold as aftermarket modifications for high performance cars like the Ford Mustang, as well as some Tesla models.
Read More Share
Details
Last Updated Dec 12, 2024 Related Terms
Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
3 min read An Electronic Traffic Monitor for Airports
Ground traffic management program saves passengers and airlines time while cutting fuel costs
Article 2 weeks ago 2 min read Super Insulation Requires Super Materials
NASA researchers helped create an insulation coating that blocks heat and sunlight
Article 3 weeks ago 2 min read From Mars Rovers to Factory Assembly Lines
NASA-funded AI technology enabling autonomous rovers and drones now keeps an eye on conveyor belts
Article 1 month ago Keep Exploring Discover Related Topics
Missions
Materials Science
Metals | Semiconductors | Polymers and Organics | Glasses and Ceramics | Granular Materials The Microgravity Materials Science Discipline conducts…
Climate Change
Astromaterials
Inside world-class laboratories, scientists perform research on planetary materials and the space environment to investigate the origin and evolution of…
View the full article
-
By NASA
This article is from the 2024 Technical Update
Autonomous flight termination systems (AFTS) are being progressively employed onboard launch vehicles to replace ground personnel and infrastructure needed to terminate flight or destruct the vehicle should an anomaly occur. This automation uses on-board real-time data and encoded logic to determine if the flight should be self-terminated. For uncrewed launch vehicles, FTS systems are required to protect the public and governed by the United States Space Force (USSF). For crewed missions, NASA must augment range AFTS requirements for crew safety and certify each flight according to human rating standards, thus adding unique requirements for reuse of software originally intended for uncrewed missions. This bulletin summarizes new information relating to AFTS to raise awareness of key distinctions, summarize considerations and outline best practices for incorporating AFTS into human-rated systems.
Key Distinctions – Crewed v. Uncrewed
There are inherent behavioral differences between uncrewed and crewed AFTS related to design philosophy and fault tolerance. Uncrewed AFTS generally favor fault tolerance against failure-to-destruct over failing silent
in the presence of faults. This tenet permeates the design, even downto the software unit level. Uncrewed AFTS become zero-fault-to-destruct tolerant to many unrecoverable AFTS errors, whereas general single fault
tolerance against vehicle destruct is required for crewed missions. Additionally, unique needs to delay destruction for crew escape, provide abort options and special rules, and assess human-in-the-loop insight, command, and/or override throughout a launch sequence must be considered and introduces additional requirements and integration complexities.
AFTS Software Architecture Components and Best-Practice Use Guidelines
A detailed study of the sole AFTS currently approved by USSF and utilized/planned for several launch vehicles was conducted to understand its characteristics, and any unique risk and mitigation techniques for effective human-rating reuse. While alternate software systems may be designed in the future, this summary focuses on an architecture employing the Core Autonomous Safety Software (CASS). Considerations herein are intended for extrapolation to future systems. Components of the AFTS software architecture are shown, consisting of the CASS, “Wrapper”, and Mission Data Load (MDL) along with key characteristics and use guidelines. A more comprehensive description of each and recommendations for developmental use is found in Ref. 1.
Best Practices Certifying AFTS Software
Below are non-exhaustive guidelines to help achieve a human-rating
certification for an AFTS.
References
NASA/TP-20240009981: Best Practices and Considerations for Using
Autonomous Flight Termination Software In Crewed Launch Vehicles
https://ntrs.nasa.gov/citations/20240009981 “Launch Safety,” 14 C.F.R., § 417 (2024). NPR 8705.2C, Human-Rating Requirements for Space Systems, Jul 2017,
nodis3.gsfc.nasa.gov/ NASA Software Engineering Requirements, NPR 7150.2D, Mar 2022,
nodis3.gsfc.nasa.gov/ RCC 319-19 Flight Termination Systems Commonality Standard, White
Sands, NM, June 2019. “Considerations for Software Fault Prevention and Tolerance”, NESC
Technical Bulletin No. 23-06 https://ntrs.nasa.gov/citations/20230013383 “Safety Considerations when Repurposing Commercially Available Flight
Termination Systems from Uncrewed to Crewed Launch Vehicles”, NESC
Technical Bulletin No. 23-02 https://ntrs.nasa.gov/citations/20230001890 View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The north polar region of Jupiter’s volcanic moon Io was captured by NASA’s Juno during spacecraft’s 57th close pass of the gas giant on Dec. 30, 2023. Data from recent flybys is helping scientists understand Io’s interior. Image data: NASA/JPL-Caltech/SwRI/MSSS
Image processing by Gerald Eichstädt A new study points to why, and how, Io became the most volcanic body in the solar system.
Scientists with NASA’s Juno mission to Jupiter have discovered that the volcanoes on Jupiter’s moon Io are each likely powered by their own chamber of roiling hot magma rather than an ocean of magma. The finding solves a 44-year-old mystery about the subsurface origins of the moon’s most demonstrative geologic features.
A paper on the source of Io’s volcanism was published on Thursday, Dec. 12, in the journal Nature, and the findings, as well as other Io science results, were discussed during a media briefing in Washington at the American Geophysical Union’s annual meeting, the country’s largest gathering of Earth and space scientists.
About the size of Earth’s Moon, Io is known as the most volcanically active body in our solar system. The moon is home to an estimated 400 volcanoes, which blast lava and plumes in seemingly continuous eruptions that contribute to the coating on its surface.
This animated tour of Jupiter’s fiery moon Io, based on data collected by NASA’s Juno mission, shows volcanic plumes, a view of lava on the surface, and the moon’s internal structure. NASA/JPL-Caltech/SwRI/Koji Kuramura/Gerald Eichstädt Although the moon was discovered by Galileo Galilei on Jan. 8, 1610, volcanic activity there wasn’t discovered until 1979, when imaging scientist Linda Morabito of NASA’s Jet Propulsion Laboratory in Southern California first identified a volcanic plume in an image from the agency’s Voyager 1 spacecraft.
“Since Morabito’s discovery, planetary scientists have wondered how the volcanoes were fed from the lava underneath the surface,” said Scott Bolton, Juno principal investigator from the Southwest Research Institute in San Antonio. “Was there a shallow ocean of white-hot magma fueling the volcanoes, or was their source more localized? We knew data from Juno’s two very close flybys could give us some insights on how this tortured moon actually worked.”
The Juno spacecraft made extremely close flybys of Io in December 2023 and February 2024, getting within about 930 miles (1,500 kilometers) of its pizza-faced surface. During the close approaches, Juno communicated with NASA’s Deep Space Network, acquiring high-precision, dual-frequency Doppler data, which was used to measure Io’s gravity by tracking how it affected the spacecraft’s acceleration. What the mission learned about the moon’s gravity from those flybys led to the new paper by revealing more details about the effects of a phenomenon called tidal flexing.
This five-frame sequence shows a giant plume erupting from Io’s Tvashtar volcano, extending 200 miles (330 kilometers) above the fiery moon’s surface. It was captured over an eight-minute period by NASA’s New Horizons mission as the spacecraft flew by Jupiter in 2007.NASA/Johns Hopkins APL/SwRI Prince of Jovian Tides
Io is extremely close to mammoth Jupiter, and its elliptical orbit whips it around the gas giant once every 42.5 hours. As the distance varies, so does Jupiter’s gravitational pull, which leads to the moon being relentlessly squeezed. The result: an extreme case of tidal flexing — friction from tidal forces that generates internal heat.
“This constant flexing creates immense energy, which literally melts portions of Io’s interior,” said Bolton. “If Io has a global magma ocean, we knew the signature of its tidal deformation would be much larger than a more rigid, mostly solid interior. Thus, depending on the results from Juno’s probing of Io’s gravity field, we would be able to tell if a global magma ocean was hiding beneath its surface.”
The Juno team compared Doppler data from their two flybys with observations from the agency’s previous missions to the Jovian system and from ground telescopes. They found tidal deformation consistent with Io not having a shallow global magma ocean.
“Juno’s discovery that tidal forces do not always create global magma oceans does more than prompt us to rethink what we know about Io’s interior,” said lead author Ryan Park, a Juno co-investigator and supervisor of the Solar System Dynamics Group at JPL. “It has implications for our understanding of other moons, such as Enceladus and Europa, and even exoplanets and super-Earths. Our new findings provide an opportunity to rethink what we know about planetary formation and evolution.”
There’s more science on the horizon. The spacecraft made its 66th science flyby over Jupiter’s mysterious cloud tops on Nov. 24. Its next close approach to the gas giant will occur 12:22 a.m. EST, Dec. 27. At the time of perijove, when Juno’s orbit is closest to the planet’s center, the spacecraft will be about 2,175 miles (3,500 kilometers) above Jupiter’s cloud tops and will have logged 645.7 million miles (1.039 billion kilometers) since entering the gas giant’s orbit in 2016.
More About Juno
JPL, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft. Various other institutions around the U.S. provided several of the other scientific instruments on Juno.
More information about Juno is available at:
https://science.nasa.gov/mission/juno
News Media Contacts
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Karen Fox / Erin Morton
NASA Headquarters, Washington
202-385-1287 / 202-805-9393
karen.c.fox@nasa.gov / erin.morton@nasa.gov
Deb Schmid
Southwest Research Institute, San Antonio
210-522-2254
dschmid@swri.org
2024-173
Share
Details
Last Updated Dec 12, 2024 Related Terms
Juno Jet Propulsion Laboratory Explore More
5 min read NASA’s Perseverance Rover Reaches Top of Jezero Crater Rim
Article 3 mins ago 5 min read NASA-DOD Study: Saltwater to Widely Taint Coastal Groundwater by 2100
Article 22 hours ago 4 min read NASA Study: Crops, Forests Responding to Changing Rainfall Patterns
Earth’s rainy days are changing: They’re becoming less frequent, but more intense. Vegetation is responding.
Article 22 hours ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.